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ABSTRACT 0

This report presents a variety of fundamental investi-
gations, with common analytical foundation in the work o
of Jacques Haqamard, conducted for the purpose of cevelop-
ment of advanced communications systems. Chapter I
presents a functional analysis approach toqhe demodula-e
tion problem% as formulated in a system of integral equa-
tions by D. C, Youla. Its principal content is the dis--
cussion of the engineering significance of a quadratic,
variable principle that underlies the Youla formulation.
Chapter II concentrates on mathematical considerat9bns

S ,with the dual purpose of completing the arguments in.-!
volved in Chapter I and indicating where forward work
"is needed to enlarge the domain of the validity of the
theory of Chapter I. Chapter III presents communica-
tion techniques derivable from incidence matrides of
balanced incomplete bloek design configurations@
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INTRODUCTION AND SUMMARY
0

The research on communication system techniques reported in this document

has a common basis in analytical concepts introduced by the great French
mathematician, Jacques Hadamard, between the years 1893 and 1945.

Chapter I presents a functiona'l analysis approach to a system of integral
equations introduced in 1954 by D. C. Youla. A solution of Youla's equa-
tions yields a maximum likelihood estimate of continuous modulated intelli-

gence which has been corrupted by noise. The basic result of Chapter I is
the identity of Youla's equations with the first variation of a quadratic func-
tional. In order to devote the entire first chapter to this basic result and
its consequences, the existence of certain represenlions needed in the
forn~ulation of the quadratic functional is postulated am'~d their actual con-
struction is deferred to Chapter II.

0 0
Chapter II begins with the construction, under suitablerestrictions, of the
representations needed for Chapter I. An attempt to lighten the restrictions
so as to include all cases of physical interest leads us to the conclusion,
already noted by Youla, tha the class of functions to be considered as can-
didates for solution~nust be widened to include distributional solutions,

@ @ i. e., Dirac delta functio& and their derivatives. The question of preserv-
ing integral representations for such solutions was the basic consideration

in Hadamard's invention of the "finite part" of a divergent integral. This
concept togeser with Hadamard's concept of a "properly posed" problem are
introduced and shown to underlie two basic approaches of importance, namely,
the repres~ntation byglivergent integrals and the representation by Fourier

integrals.

@ @
Chapter III presents communication systems techniques derivable from in-
cidence matrices of balanced incomplete block design configurations. For a
symmetric design the above@onfigurations are called 0 k> X configura-
tions and these constitute a generalization of Hadamard Matrices, i. e., for
special values of t) At' N there exists a corresponding Hadamard Matrix
and conversely every Hadamard Matrix generatee a 4A r , configuration.
A Hadamard Matrix is an orthogonal matrix, all of whose elements are + 1.
For several years engineers@ particularly at the Jet Propulsion Laboratory,
have utilized such matrices in the problem of the optimum codes for com-
municating through space. In our work we regard the incidence matrix of a

A

0 0

0 0
0@



Page v
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r > 'N configuration as a generalization of orthogonal matrices; i.e. , we
define "almost orthogonal" matrices. Theseare then utilized as the basis of
an "almost orthogonal multiplexing technique" which has certain attractive
features for use as an anti-jamming system. To as complete an extent as
time permitted we investigated questions of circuit configurations, timing,
and pra~ctical implementation for P 42,Ž. configurations of low order. From
an engineering viewpoint it turns out that the increase in circuit complexity
in going from an orthogonal system based on a Hadarnard Matrix to an "almost
orthogonal" system based on a - configuration is the additional inclu-
sion of a set of fixed resistors at the output terminals.

The investigations described in this report were begun in April 1962 and
concluded in March 1963. The work was performed at Vitro Laboratories
in West Orange, New Jersey. The principal investigator was Dr. R. G.
Segers, and the Rome Air Development Center Project Monitor was Mr.
Alfred Kobos. The work was supported by Contract AF 30 (602)-2649.

0 In August, 1962, the project monitor, Mr. Alfred Kobos, brought to our
attention the work of Youla which resulted in the treatments in Chapter I
and Chapter II. In October, 1962, the principal investigator met with Mr.

OKobos and Dr. John Lawton of the Cornell Aeronautical Laboratory in
Buffalo, New York to discus~s Youla's equations. Dr. Lawton's approach
to Youla's equations is based on an extension of Youla's series technique for
the FM case and does not overlap our approach but the discusvsion served
to focusoour attention on a functional approach and the consequent use of the
concepts of Hadamard that were available. It is a pleasure to exp ess at
this time our appreciation of the technical liaison provided by the project
monitor, Mr. A. Kobos, and of the stimulation • the resulting, discussion

0 with Messrs. Kobos and Lawton. 0K o
@

Q0 C0
a a
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CHAPTER I

OPTIMUM ANALOG DEMODULATION THEORY

1.1 INTRODUCTION

The classical procedure for minimizing a f4.icticn, on a finite-dimensional
space is to set its gradient equal to zero and to examine the value of the

function at these points and the signature of the quadratic form whose co-
efficients form the Hessian matrix of the function. The corresponding pro-

cedure in variational problems is to solve the Euler equation of a variational
problem and io test the solution for nature of the extrema, i.e., maximum,

minimum or stationary character, by the study of the second variation. On

the other hand when an equation, irrespective of its origin, can be interpreted

as the Euler equation of a variational problem one can often obtain algorithms
for the solution of the corresponding functional. Everything we do in this
chapter, and indeed in most of the next chapter, is centered on examining a

set of integral equations whose solution, or solutions, would determine the
optimum receiver (in the sense of maximum likelihood) in the presence of

additive nAise for the c~se in )Which an analog signal • is transmitted by
means of a carrier which is modulated by &(--) in some prescribed way. The

equations were introduced by Youla, (?*, Youla, page 95) in an outstanding

paper in 1954. JUnfortunately, in the casgs of most practical interest, namely

phase modulation, and frequency modulation, it has not yet been possible to

solve the resulting equations. Consequently, the search for a corresponding

variational problem, which has been successful, is detailed below.

The case of optimum demodulation of AM signals has been investigated and

an approxionate solution has been obtained (40, Thomas, et al.). A maximum

likelihood estimation process for FM signals has been investigated by line-

arizing the integral equations of Youla (41, Lawton, page 1 I).
0

* We introduce notation and assumptions compatible with Youla (39; Youla,

page 90) as &llows. The demodulator, or receiver, is assumed to operate

on the last r1 seconds of data. Symbolically we hie

4 @
@

0

*Notation relates to references in bibliography. 9

% O 0

0

@0

0@
0 : _... . .e -. . .. . . . .•® . . . . .. . .. . . .... . .. .
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in which mCt--) and 1PCL') , both statistical in nature, represent the in-

telligence and noise, respectively, and q5z[ r &-e)3 represents a
generalized modulation scheme. For example, amplitude modulation (AM)

may be designated by choosing

(1-1-2) AM: (Z2 +oI .~~J~~~~-p

whereas phase modulation (PM) is designated by choosing

(1-1-3) PM: LJELt)A + >~o- OL

and frequency modulation (FM) is designated by choosing

(1-1-4) FM: q_ a.- + 4,-

In these relations, o is the amplitude of the unmodulated carrie.r whose
frequency is 44. , is an arbitrary phase angle, and 2X is a modulation
index. Both the intelligence kL'r) and the noise svor) are assumed to be
Gaussian processes with zero mean and continuous covariance functions

"•(%t) and ,(sz> .

Having received the waveform C-1(t , defined in (I-I-1), the ideal
receiver can do no more than compute the 'a posteriori probability density

S' t , I , (1)•3 of all possible intelligence signals 0, ') ( T-)

Woodward; p. 62.).

The next dgecision, an% this is a critical one, is to decide on a criterion which

will produce in some well defined sense a "best" estimate of ct(z) ,
which we designate by a*(-) . The criterion adopted by Youla (L4 ; Youla;
p. 93 ) is the maximum likelihood criterion ( v ; Cramer; p. 498 which
chooses o -Cr) such that TrO•(-c is maximized.

We now have enough notation to write down the celebrated equation of Youla
Youla; p. 95 ) gotten by a derivation that we will discuss at a later

point in this paper. The maxinmm likelihood estimate (or estimates) *¼()
@ is determined by the following two integral equations;

0

RV@
0 CID
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4,& --

In (1-1-5) we have yet to identify •Lg) in a physical context. At least
to this author (z) has no natural physical interpretation and we will
treat • (•) as a function whose knowledge will aid us in determining

but not as a quantity of intrinsic interest.

Although Youla calls this a maximum likelihood criterion, it may be termed
a maximum a posteriori probability criterion since the a priori probability
of the modulation is used.

l.2 YOULA EQUATIONS AS EULER EQUATIONS

Since (1-1-5) is linear in i t•,) in both equationswe first solve for
S(f) and manipulate the two results. We postulate the existence of in-

verse kernels -( ,C) and • (%s) such
that

±) d. -ri ) -- 7E

CO t

an assumption to be justified later in the discussion in Chapter II. Applying

0
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(1-2-1) to (1-1-5) we obtain

(1-2-2)

Now multiply the first equation in (1-2-2) by S -*(, , an arbitrary func-

tion, and the second equation in (1-2-2) by

then integrate both equations to obtain

T,- -4,-T

4 4-r -t'-

""+0 0

J- L -D 2- & C*(ý)j ci
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We further postulate that both kernels are symmetric, i.e.,

in order to symmetrize both sides of equation (1-2-4). This assumption can
be by-passed by more general methods L31 ; Tricomi; page 145), which,
at this early stage of investigation aren't worth the resulting complication in
manipulation and notation.

We now define the quadratic functional

(1-2-6) R ILI (g ) CYL , o W*t

& + -- r 4

and the limiting process

I-
(1 -2 -7) F F_ _ __ _ __ F__ _

4 -T .--r

to

p
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the last step following from the symmetry of R (T) , i.e., from

(1-2-5). We are now justified in using the notation introduced by Volterra
CS& ; Volterra; page P*t • as follows,

which is a generalization to a continuum of variables of the more common
formula

for functions of A-- variables F, and where implicitly
in (1-Z-8) we have defined

"t;-T
upon comparison with (1-2-7). In this notation (1-2-4) becomes

tt

(5 - Z e

-4 -T +-T-r

Now consider the functional quadratic in e ) o-. * t)1 , i.e., define

I0
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(121)GES LLs e,~c~5 [Ss.3d,

and the limiting process

(1-2-13) Q G •-- • • • • ' ' • i • • • '] -[ • "•-o•

+ £

t--T -b--T

•4. -- " e-t~

t he last step following from the symmetry of • s) , i.e.,
from (1-2-5). We are now justified in using the notation

(I-Z-1-)
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where implicitly in (1-2-14) we have defined

4--T

In this notation (1-2-11) becomes
(1-2.-16) 1_2 \ 2"FE1% (Am*L•>] S •( __ .

t

To further simplify (1-2-16) we define, a linear functional in e-x o-j1
by

-a -T l t -r
and the limiting process

_ _ o
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4-t 6-T 4 -

We are now justified in using the notation

4,-T

where implicitly in (1-2-19) we have defined

(1 -2-2?0 ) 9 H CiL Z -1IdYc1*~-~tA~c

In this notation (1-2-16) becomes

1;-\

4 -T

-T
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which is the first variation C ( ; Gourant Vol. I; page 186) of the com-

posite functional

(1--2) 7 V~c&K +GLeL-t~c~t2S H

at the function 2(L'9) , i.e., o-(t) makes (1-2-22)

an extremum. To see this analytically we note that the first variation of

(I-Z-22) is, by definition,

(1-2-23) Lrr•-) -__-]_

by equation (1-2-21). Before summarizing our results as a theorem, we

combine the last two functionals on the right hand side of (1-2-2Z). This is

natural since G is quadratic and H is linear in e _L-ceCj

so that "completing the square" produces the desired result. More explicitly

we have from (1-2-2Z) that

(-1-r-24

S.. ......... .... .. . . ~ ~ ~ rl"- E . . .. . ...... . . . . .. ....... .. ........ g
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so that

(1-2-25) cne i (-- a

4- ~ L~ ~~~ xt

r); -T -6zT

46 -Tz-

where we have again used symmetry of e gz

Since

(1-2-z6) zL)

we can rewrite (1-2-2~.5) as
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(1-2-27) &') ( CIX3) c~' U

-e--T •-

4-•-r 4÷-i

In summary, the above manipulation exhibits a quadratic function,
T L_0,_C-)2 in equation (1-2-27), such that the extrerna of

M L-ol) are attained by the same *(tC) that solve Youla's
equations, (1-1-5). In the language of Variational Calculus the Youla equa-
tions are the Euler equations ( (• ; Courant, Vol. 1; page 184.). We
summarize our results as a theorem, the discussion of whose consequences
constitutes the material of the next section.

1. 3 PRINCIPAL RESULT AND CONSEQUENCES

Consider the following diagram.
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FIGURE 1 - BASIC BLOCK DIAGRAM

The problem is to design the demodulator; i.e. , knowing e- (I)

construct •*(.C)

Theorem: The extremum, i.e., the maximum,
minimum, or stationary values of the quadratic

functional

(1-2-27)-- - ',) -) Y C[YdI
-%-'C-e-T
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are provided by the function (or functions) cOTih) for which

(1-2-23) 0'- 4-g E (Z)3 -

The same function (or functions) o(•) satisfies the equations

=t-

(1-3-z)

andpostulating the existence of inverse kernels P(hz ,

such that

(i-2-1)

heqto asiaed wih hms l es , also satisfies

the equations associated with the maximum likelihood estimate of Youla
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(2. ; Youla; page 95).

(1-1-5) ja--)

9- ?A.4)S)O()

all equations being valid for the interval (--T) 4) and symmetric
kernels Z('9z f= fLK)

Proof: The manipulation involving the first three equations, (1-2-Z7),
(1-2-23), (1-2-2), of the theorem are straightforward, though lengthy, and
simply amount to reversing the steps taken in detail in Sections 1 and 2 of
this chapter. The manipulation from (1-2-2) to Youla's equations (1-1-5)
involves the existence of inverse kernels so as to give validity to (1-2-1) and
is essentially an application of the Hilbert-Schmidt Theorem ( S4 ; Tricorni;
page 110). In essence at this point we are excluding kernels f6r which the
Hilbert-Schrnidt Theorem is not applicable and in this precise sense the proof
of the theorem is complete. Since, however, there are kernels, important in
applications, for which the Hilbert-Schrnidt Theorem is not applicable we will
discuss the necessary additional conditions for their inclusion at a later point,
namely, in Chapter II. Q.E.D.

There are many reasons why the formulation of a problem on a quadratic
variational principle is important. First of all the differential equations of
mathematical physics have been successfully analyzed in the light of their
relation to quadratic varational principles. For linear functional equations
of mathematical physics see Courant( 6 ; Courant Vol. I, page 252) and
for symmetrical hyperbolic systems see Courant ( 7 ; Courant Vol. II,
page 592). Secondly, the work of Synge( 3 1 ; Synge ) has pointed out

the advantage of a geometrical interpretation of a quadratic functional in

which the "distance" of the approximations to the exact solution can be
deduced. Since usually the engineering problem is not to attain the exact
solution but to ascertain that a structure that can be constructed is not far

from the best possible the approach of Synge could turn out to be as signifi-

cant for communication theory as it presently is for elasticity. Thirdly,

there are direct numerical techniques for establishing upper and lower bounds
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on functionals. A definitive modern treatment is provided. by a translation of
the Russian "All-Union Conference on Functional Analysis and its Applica-
tions" ( I ; American Math. Soc. Trans.).

Since variational principles have provided some of the greatest generaliza-
tions in all of physical and biological science it is appropriate to present a
short history of the attempts of early natural philosophers to discover a
minimizing principle in nature. The first such discovery was the "principle
of least action", where action is to be understood as the mean value of the
difference between the kinetic and potential energies of a physical system
averaged over some fixed interval of time, which principle originated with
P. L. M. Maupertuis (1698-1759). Note that our functional MLa-i( in
the equation (1-2-17) contains the difference of two integrals with the same
kernel and consequently the mathematical form for an
analogous principle is available for speculation. The general statement of
Maupertuis was made in an attempt to extend the theorem of P. Fermat
(1601-65) that a ray of light, when traveling in a homogeneous medium, will
pass from one point to another either directly or by reflection by the shortest
path and in the shortest time. Having found the quantity that tends to a mini-
mum, Maupertuis regarded the principle as all-inclusive: the laws of move-
ment derived from it would apply to all natural phenomena. The astonishing
degree to which he was correct in his prophecy can be seen not only in modern
physics but in biology as well. For Maupertuis' principle is none other than
Claude Bernard's principle of the maintenance of the internal environment,
Walter B. Cannon's principle of homeostatisor Le Chatelier's law of chemi-
cal equilibrium: "In a system in equilibrium, when one of the factors which
determine the equilibrium is made to vary, the system reacts in such a way
as to oppose the variation of the factor, and partially to annul it. " For a
fascinating account of the consequences of the above principles see Lotka's
classic work on mathematical biology ( 17 1 Lotka; page 15Z) .

The history of the calculus of variations, in the sense of obtaining necessary
and sufficient conditions for obtaining extrema of integrals, is founded mainly
on the work of Euler (1707-83) and Lagrange (1736-1813) with Lagrange's
work extended by Hamilton (1805-65) in his classical papers on dynamics.
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1. 4 THRESHOLD PHENOMENA IN A VARIATIONAL SETTING

One of the dominant ideas in modern engineering is to employ "threshold"
types of communication systems. In essenceif the modulated signal has
sufficient power relative to the noise, a virtually perfect transmission is
possible ( V7 ; Shannon; page 9). This "all or nothing" principle is natural
to quadratic functionals, indeed it appears in the prototype of all problems in
elastic stability, namely, the problem of the buckling of a long slender elas-
tic column or rod under compressive forces at its ends. This problem was
treated some two hundred years ago by Euler. The physical occurrence is
quite easy to explain and understand. Obviously, if the column is long and
slender, the straight unbent state of it will not remain stable if the end com-
pression is made too large: that is clear to everyone's physical sense.
What is interesting to us about the problem is its mathematical description
in terms, to be described below, of the difference of two positive quadratic
forms and the resulting close correspondence of the functional defined by
this problem with 1 Loe(a

More explicitly, if the rod or column is of length L and if its lateral dis-
placement is denoted by U•()• , 0 c- x i. 4 , then the potential energy
"JT is, apart from material constants, given by ( 4. ; Courant Vol. I;

page 273).

(1-4-1) tjkxJYJC)3f-~L- T4L .CxA

0 0

The first integral is the energy of bending, the second integral the energy of
elongation, so, since we are compressing, the negative sign appears.

Lemma: For sufficiently small values of. " the minimum of "U Lkt)•3,
with the boundary conditions ((o) -_ L) =a , has the value zero.
Moreover, the minimum is attained only by ak6x) -o

Proof: For example, this is true for . < f . Since

L
(1-4-2) 24(-,) ()C 0(o)

0

it follows that there exists at least one point •L, at which

(1-4-3)/
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then we have that

(1-4-4) ('X•) = 4 (.k)"
KC-

and consequently

Since (1-4-5) is true for 0 i X- 4- • it follows that

(1-4-6) A /(g .

so that the functional -'t- 091 defined in (1-4-1) satisfies

(1-4-7) Jl(O7 1I)e. 5)~~

0 o

00

U- "IP"CV 1C) 7-y

Moreover, equality in (1-4-7) is attained only for 'EtCt) o . This is

clear from the last term in (1-4-7). Q. E. D.

Taking as self evident the principle that the minimum of the potential energy

",-ujý_Wo)j yields the equilibrium states ttO9) the physical meaning:

of the lemma is that for sufficiently small •_ the unbent state of the rod,

tUQZ) 7 F , is the only equilibrium state. Since it is clear physically
that bent states U()cj o exist, and mathematically for any such admiss-
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ible states 1dOC) - we can choose

(1-4-8) > °

we see the possibility that -L T K) 14- O From the lemma
and (1-4-8) it is now clear that there exists a critical value of f ,. call
it ", , which causes buckling, i.e. , the straight state ceases to be the only
possible equilibrium state and a bifurcation of the solution of the equilibrium
problem takes place; the bent state is then the stable state of equilibrium.
This is truly a bifurcation phenomenon in the sense meant by Poincare(vt
Tricomi; page 161); that is, U (Y) - 1CY- ?N , a function of both
the independent variable %- and of the load parameter T such that when
attains the critical value ?o new types of solutions of the equilibrium pro-
blem appear in the neighborhood of the unbent state which co-exist for the
same values of the physical parameters. It is also clear that *Z. is the
minimum of the right hand side of (1-4-8) for tuLx) 4o a A goodly
number of the readers of thisreport will be familiar with the totality of re-
sults in the present case (3a ; Stoker; page Z51) , i.e., that there are in-
finitely many critical values and correspondingly many different buckled
shapes or modes of the column.

What can the above discussion add to our understanding of the optimum de-
modulation problem? First of all we have never decided what type of ex-
trema, i.e., maximum, minimum or stationary point, of Tlo-L-ýI is
appropriate. The above discussion yields an approach that indicates a mini-
mum is appropriate. To see this consider the functional T1 Lt-')&J
rewritten here for convenience as
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R MCI (1 -) 4j~-z

- ~~~ Cue-) czU)Q,t) /'t

As, with we are interested in the reference or zero state

o for which we expect the estimate j*(1 o 0 Since

(1-1-1) ~~a ¢, -')- .' C,)3 ÷ -C)j

we get from (1-4-9) that

(1-4-10) R L-LjsL

It is also clear that for any reasonable form of modulation, say the AM,
PM, and FM cases, we have characterized by (1-1- 2), (1-1-3), and (1-1-4),
that the modulation is proportional to .o the amplitude of the unmodulated
carrier. Consequently from the last integral in (1-4-10) we can factor out

i which will play the role of " >O in our previous reasoning. We
need one more general fact about the integrals in (1-4-9) before proceeding
on our particular tack. We want to establish conditions such that each
integral in (1-4-9) is non-negative. Fortunately such conditions are known,

and have been known for a long time.
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Theorem (Hilbert). A necessary and sufficient condition
for the quadratic form T(c)c) , defined by

1-4-11) - ,X,) 1)
to be non-negative in L• - space, i. e., for the in-
equality.

(1-4-12) T(0Q)4) • o , C4 -
to hold, is that all the eigenvalues of K() I-) be
positive, i.e.,

(1-4-13) 0 'X I 'L X- IL

Proof: See Tricomi(q Tricori; page 124). Q. E. D. If in equation
(1-4-12) we have the inequality sign whenever is non-zero over a set of
finite measure the kernel K(x-,,) is called positive -:definite.

We nowpostulate that the kernels -_ (£ g t) and J _ ( t C)
are positive definite. The plausibility of the assumption is, of course,
evident from (1-2-1) which defines the kernels in question as "inverses"
of the covariance functions Ra • (1, -) and, M-_ (t'r) which have only
positive eigenvalues and moreover are positive definite. Precise conditions
for the validity of the postulate will, as in our basic theorem, be discussed
in Chapter II.

We now return to our reasoning with (1-4-10). To get a definite point of
reference for :L 6" OI)I we not only put 4XC) - o but turn the
carrier power down to zero, i.e., from (1-4-10) we have that

(1-4-14) T 0

0

What happens as we increase E from zero to quite a large value in
(1-4-10)? The first integral containing A('C) depends linearly on

Vt and hence on 2o ; while the second integral, whose con-
tribution we know to be positive by itself and negative when preceded by a
negative sign as in (1-4-10), depends on the product of 9-,ii and

e, 1•_,oI and hence on For a fixed but arbitrary sample of
noise ^t(9 it is clear that the last term in (1-4-10) will for sufficiently
large Ea make x t'•'(C)3 0

€o
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For from (1-4-10) it is only necessary to choose

A1- -5) EO . '

where we have put

(1-4-16) Aj " 1-- ,LC ( )a ý -- -
A

i.e., the modulation ? [•,ot)• is normalized so as to make the
role of F.o more apparent. There is a close correspondence between
(1-4-15) and (1-4-8) since the fulfillment of each implies the respective
functionals achieve negative values. The reason for assuming the kernel

'R-t (' is negative definite is now clear from (1-4-15) since
otherwise the possibility of the denominator vanishing in (1-4-15) exists.
Actually this assumption is not that critical since if it were not fulfilled for
some '_('g.) of interest it wouldmerely be necessary to choose
the modulation U o-t• C-4&)3 so as to avoid the null function of

1Z - ý . It is also of interest to comment on the numerator of
(1-4-15). Since we have no way of knowing the sign of m'(X) the only
reasonable course in assigning E. , which would be fixed in application,
is the conservative inclusion of absolute value signs in the numerator of
(1-4-15).

It is now clear how to handle the general case a4r•) eo . Referring now
to (1-4- 9) instead of (1-4-10) we note that the contribution of the first inte-
gral is positive and hence more power, i. e., a larger value of F• ) is re-
quired to make a~aCV)j < . Essentially the same mechanism
comes into play as with (1-4-9). The last integral involving 9-j = 9-Z

is capable of forcing I VLx( < o by using a sufficiently large value of
* We summarize our results as follows.
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Theorem: For fixed, but arbitrary, samples k(c) and
,cr_ of the intelligence and noise in the interval + -TEr

t. and for positive definite kernels 'R_ _
and _? L)•) there exits a sufficiently large value
of i , the amplitude of the unmodulated carrier, to
make 0 < -Z< for any arbitrary magni-
tude M >o•

Proof: The term in -r E-A(tý3 which is quadratic in o and is in-
herently negative has been demonstrated by our previous remarks to dominate
the value of tlo'3 Q. E. D.

Equating more power, i. e., larger F6 with better transmission, which
by the above theorem is equivalent to minimizing M -- , we draw the
inference that for fixed power, i.e., fixed fo 1, the~choice a(r) ý a_(•) ,
which by our basic theorem gives an extremum to T_ (-)I , must
correspond to a minimum of X1[tL-)

We now show the consistency of the above conclusion with the basic postulates
on which Youla has based his theory. Following Youla (31 ; Youla; page 93)
the theorem of conditional probabilities is that

(1-4-17) ~ CL

where the quantities in (1-4-17) are defined by

(e likelihood of e•t-e-)

likelihood of (ez)

(1-4-18) 'i) lklhoof (c
S " conditional likelihood of q_, (z) given

S(--V ýat the transmitter

a posteriori likelihood of c,(• given
e_, C7) at the receiver.

The procedure, called the maximum likelihood estimate, adopted by Youla
is to utilize the knowledge of C ,(t- to maximize pLa I .,) by choice
of 0-T) . Youla then reasons ( ; Youla; page 94 ) that since

V I (e a- likelihood that v - D (3
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noise)so that (1-4-17) is equivalent to

and we desire to maximize P(. e,).

Lemma: The extrema of the functional TLxt(-•)3 are attained by the same

function m*(zt (or functions) that yield extrema of the functionals
, and -- IEAL)3 3 since both mappings are monotone.

Choosing the negative exponential in the above lemma we obtain from
(1-2-27) that

X Y6)

(1-4-20) itL~r)

4--Y- •--r"

(24 - R.• (J,) ,Ll x*"

Compare (1-4-20) and (1-4-19) term by term noting the correspondence of
our double integrals with the quadratic forms in equations (8), (9), and (12)
of Youla(sI ; Youla; page 94) . Since our double integrals are sometimes
called "quadratic forms with an infinite number of variables "IC3; Tricomi;
p. 118) the correspondence is quite close, except of course for a normal-
izing factor to make probability interpretations possible. Hence the right
hand sides of (1-4-20) and (1-4-19) suggest the reasonableness of using our
functionals in place of the series technique of Youla. The correspondence
of the left hand sides requires special comrhent. More explicitly we have
that

where by * we mean identical except for a normalizing constant factor.
First of all the minimization of Z• [a•oL , which by our basic theorem and
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previous reasoning in this section is accomplished by the same that
satisfy Youla's equations (1-1-5), yields a maximization of (1-4-21) which
is precisely the maximum likelihood criterion. Secondly, the fact that

9.,C-cs is a known function, as indicated by the notation 7( LavI>, played
an essential role in the manipulations leading us to 71'a(i•] More
explicitly, even though

(1-1-1) 9?~-1 -) -~ Q-Dr) J)ý

and consequently depended on &Lt-) , we did not allow for any variation in
9-,Cz-) when we formed the expression -4-) + S ab(' . This was

correct, of course, only because 9P,(-) was explicit data, known at the
receiver, and our search for a critical a by variation over all
admissible .Czt) had to be compatible with the fixed nature of 0jtV
What we are saying, of course, is that the correspondence (1-4-21) is very
satisfying in the number of checks it yields on the correctness of the theory
of this chapter.

1. 5 SOME SPECULATIVE CONSIDERATIONS

We now proceed with one of the author's favorite ways of turning an intract-
able problem into an at least approachable problem which, hopefully, bears
resemblance to the original. First of all we introduce a geometry, which
will again require the assumption that any relevant kernels like R &^
and (I• (v) be positive definite so that a metric can be defined. As in
the previous section the discussion of the conditions for which the assumption
is valid will be deferred until Chapter II. Having a geometry we then employ
the trick of assuming that the solutions of interest have certain simple fea-
tures. For example, in what follows we construct a triangle and there are
certain heuristic reasons for asserting the triangle is a right triangle. The
resulting simplification in analysis is considerable so we proceed with opti-
mism. Finally a simple structure emerges, but we must change the setting
of the problem somewhat in order to obtain a consistent structure. The
reader who is scornful of such tinkering or who feels no need of geometrical
motivation may proceed at once to Chapter II without any loss in logical
continuity.

In order to associate a geometrical picture with T[at(Iz we introduce
a vector notation.

(17) Q-,(
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and the inner products appropriate to the kernels ? £ ) and
i.e., put

-rALx L11eoL~L

(1-5-2)

K .•-rt- T

For, either inner product in (1-5-Z) we introduce -the notation

(1-5-3) _Z'. \LXx

which is the distance from ). to the null vector 0- at the origin of
the coordinate system. Then from (1-2-27) we obtain in the above notation,

".- 2. a..

(1-5-4) T:c.L]- I I - ii _ -

Since the data received, 0- (') , is an additive combination of the modulated
signal, r •. •c t5 , and the noise, •&•) , we can write

(1-5-5) 4- - -+

Inserting (1-5-5) in (1-5-4) we obtain another expression for -XL()3
namely, (i-•-+). •: b-c+•3 = It o.. •I ,_. It Iu -- t

jteiiL
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Note that (1-5-6) is identical to (1-2-22) which is the form of our functional
before "completing the square", accomplished by equations (1-2-22) to

,Li (1-2-27).

Having before us the simplest possible representations for L-IAL1]
namely, (I-5-4) and (I-5-6) we ask what choice of a-
can lead to an extremum of T_ ? The last term in (1-5-6)
yields a clue to a contribution to TLac,02 that we cannot control by choice
of ojL-r> .,Recalling that our knowledge of n, CC I,
the noise being added to our modulated signal, is emddl h1 1 ........ in the kernel

'. . (sz) , which is the covariance function of the noise, assumed to
be a continuous second-order process with mean zero ( 6 ; Youla; page
92), it follows that the numerical sign of A(9 in the term (•
cannot be known to us. This is a basic point. Having assumed that the
processes of interest have mean zero and having characterized our problem
by covariance functions, which are expected values of the product of two
processes, we have no possibility of knowing the numerical sign of the
noise contribution in the term (' • _L Note that all other terms

in (1-5-4) and (1-5-6) are quadratic and hence insensitive to the numerical
'sign of , e, oe. .- Since the term (e,_.-) - cannot be
controlled relative to yielding an extremum of I Ot;w3 , it is of
interest to investigate the consequences of assuming that (a " =
Even more to the point is the question of the consistency of the condition

S(L>,> o with the solution (or solutions) of Youla's equations.

Before plunging into the particular question posed by the last paragraph some
general remarks are in order to achieve the proper perspective. In the
theory of ordinary maxima and minima the existence of a solution is ensured
by the fundamental theorem of Weierstrass((o ; Courant; page 57). In con-

trast, the characteristic difficulty of the calculus of variations (and of formu-
lations like Youla's which our Theorem shows is equivalent to a question in
the calculus of variations) is that problems which can be meaningfully formu-
lated may not have solutions. In essence it is not in general possible to

choose the domain of admissible functions as a "compact set" in which a
principle of points of accumulation is valid. This is best illustrated by the
following geometric example(C, ; Courant, Vol. I; page 173). Two points
on the x- axis are to be connected by the shortest possible line of continuous
curvature which is perpendicular to the x- axis at the end points. This pro-
blem has no solution. For, the length of such a line is always greater than
that of the straight line connecting the two points, but it may approximate
this length as closely as desired. Thus there exists a greatest lower bound

but no minimum for admissible curves.
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Consequently, in the calculus of variations the existence of an extremum in
a particular problem cannot be taken for granted. A special existence proof
is needed for the solution of each problem or class of problems. Such exis-
tence proofs have not been published relative to the equations of Youla (1-1-5).
However, an indication of how such proofs can be accomplished is contained
in the work of Krasnosel'skii and Rutickii (1, ; Krasnosel'skii; Chapter IV)
on convex functions and Orlicz spaces (i. e. normal spaces of which the L4-
spaces are a special case). Since the Youla equations are expressible as the
gradient of the functional 10 ýN3 and a number of theorems (4.
Krasnosel'skii; page 214 ) on the existence of characteristic functions for such
a gradient, called a "potential operator", are known, it may be possible to es-
tablish the existence of solutions of the Youla equations by means of the avail-
able theorems. Such an effort in the future is contemplated by the author as
part of a continuing interest in this area of research.

The point of the above discussion is that there may or may not exist solutions
of Youla 's equations or equivalently extrema of the functional I: L 0- 1t")
since the existence of a bound does not imply the existence of functions attain-
ing the bound. Moreover the additional condition, (•-.L = , that
we have reasoned from (1-3-6) as desirablemay not be attainable. Regard-
less of these possible negative results we now investigate the consequences
of assuming that

(1-5-7) A(-- =

Combining (1-5-5) and (1-5-7) in a geometric construction, using the metric
ii .L as the basis of length, we obtain the following figure.

F,-G

FIGURE!? GEOMETRY OF RECEPTION PROCESS'
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To construct the above figure, called a hypercircle by Synge (3t.; Synge;
page 87 , the received signal • is surrounded by a circle of radius

it KII , the magnitude of I SL, It I being assumed larger than
the assigned radius so that the origin of coordinates - lies outside the
circle. From the origin t we draw the tangents to the circle. Of the
two possible constructions we arbitrarily choose the one in the above figure.
The essence of the construction is embodied in the single condition (1-5-7).
From the figure we see two interpretations of this condition. First of all,
the modulation St, has been positioned orthogonal to the noise * which
is what we have been postulating all along. A second, and fresh point of
view, is that for the assigned value of I 1 I1 - the angle 0- which sep-
arates ý-, and a%. has been maximized. We are now in a position to
draw a surprising conclusion concerning 0

Theorem: The condition of orthogonality,
(1-5-7) ( 0 )

suffices to determine the angle * which
separates 0-, and Q-2 More ex-
plicity Gý =- 6o

Proof: Put (1-5-7) into (1-5-6) to obtain (1-5-8)

(1-5-8) OL~~1 I

We. now retrace our steps to obtain the equation satisfied by

(1-5-9 ~ ~~e~If0

From (1-5-9) we obtain

(1-5-10) 01 -* dL

o-l-- +-T"

-~ ~ ~ ~ ~ d 4rL.~L~71 I/(s)3 S*~ _LXs

"= A
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Since % is arbitrary we obtain from (1-5- 10) that

(1-5-11) R_ ,. ( () - -. (y _S'(z))(s

Comparing (1-5-11) with t -"

we obtain two expressions for •(:) , namely

8 6 k)~~C, S) di~s tSctscS

(1-5-12)

From (1-5-12) we have

(--3 sas 5 ti()qL)d
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Multiply both sides of (1-5-13) by aI• 2, (OL1 and integrate to
obtain

7, ". -2- ) A-

Multiply both sides of (1-5-13) by q-, C1) and integrate to obtain

From (1-5-14) and (1-5-15) we conclude that

2-S(1-5-16) I

and since h % is inherently positive that

(1-5-17) II E v I ,

There is an elementary theorem in Euclidean geometry, well known to every
school boy, that states "In a right triangle where the short side is one half
the hypotenuse the angles are 300, 60', 90. 11 Hence, in Figure 2, Q 60'
and the sides of the triangle are in the proportions.

(1-5-18) II'1LI :II•".-|• fV'-II- -= "

Q.E.D.

Now that we have arrived at a definitive ratio of metrics in (1-5-18) it is
natural to attempt to "pack" the space, whose metric is determined by

1 1 i , , with triangles of the form of Figure 2, whose sides are compatible
with (1-5-18). Except for the special case given below the following fundamental
difficulty is encountered. The geometry of the space whose metric is determined
by U It L is the geometry of Hilbert Space. This is easily seen by
comparing our construction of quadratic functionals with the treatment of recip-
rocal quadratic variational problems as given by Courant(6 ; Courant, Vol. I,
page 252) . Since Hilbert Space is infinite-dimensional, i. e. , for any integer

Iv.- one can find in Hilbert Space ivi. linearly independent vector s,the constraint
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in (1-5-18) and consequently the 300, 600, 90' angle relation is not sufficient
to pin down the construction of *, , • and • unless we postulate some

further condition. Again following our philosophy of seeking the simplest solu-

tion compatible with the conditions of our problem we now restrict our atten-

tion to a structure that will produce a plane in the Hilbert Space of interest.

See Figure 3.

7 , ~ IV - 0

Z" "N"

-& 0

FIGURE 3 -GEOMETRY OF RECEPTION IN A PLANE

What we have done is restrict our possible inputs 4t(r) to three distinct
functions c,">(--) , Cý 2>t-) , and 60(-C) and postulated that the resulting
modulated signals z"Ic-t: E'L•-r, •j• and

E>r_, 04 Imake angles of 120' with each other. Each modulated signal is
of the same magnitude and, subject to the planar restriction, is separated
as much as possible from the other modulated signals. From the point of
v.3ew of coding we would designate the modulated signals as a maximi-al code
( '3'? ; Wolfowitz; page '78 ) with the decoding system consisting of the par-

titioning of the plane by the dotted lines, each of which is the negative exten-
sion of one of the modulat 'ed signals making- an angle of 60 °0 with the other. two
modulated signals. To decode, or demodulate, a received vector 42, the

I _ .. . . .... ...
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partitioning of the plane assigns the nearest modulated noiseless signal, i. e.,"either*, . Z-),Zt- l
either V , , or - from which the original c&() is obtained(6) ke _(.NI.-, ha p nst
as one of the functions CL CC , 2Z(-) , or . If r- happens to
coincide with one of the dotted lines then there are two modulated signals at
the same distance, either of which may be used without increasing the proba-
bility of error.

In summary of the construction we note that our search for a simple geometry
has required consideration of a discrete set of signals *[Ur) so that the modu-
lations might all lie in an easily visualized plane. Moreover, the desired con-
dition of orthogonality (1-5-7) and the consequent angle O 600 are only sat-
isfied by the v-, which fall on the lines which partition the plane into pie
shaped wedges. From a heuristic point of view one could reason that only
the vectors which partition the plane need be identified in an optimal fashion
and consequently in this sense the problem has been satisfactorily handled.
From a logical point of view much remains to be done to give substance to
the above approach.
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CHAPTER II

BASIC CONCEPTS OF HADAMARD AND THEIRAPPLICATION

2.1 INTRODUCTION

The subject matter of this chapter has application to specific questions raised
in treating Youla's integral equations (1-2-27) and to the general question of
integral equations of the first kind@' , Tricomi; page 143) with symmetric
kernels. We proceed from the specific to the general. First. of all,in proving
our principal result concerning Youla's equations (1-2-27), i.e., the identity
of (I-Z-27) with the first variation (1-2-23) of a quadratic functional (I-Z-27),
we assumed the existence of kernels R, (t, and 1 : (•anc)
defined by (1-2-1). The validation of this assumption is absolutely essential
to the basic ideas in Section I and we shall correspondingly spend much effort
on this topic in what follows. A second but less critical assumption, since it
can be by-passed to some extent (see the discussion following (1-4-16), is the
postulate that " Lý,-r) and T (_:) are positive definite.

(For real noise n(t) and information a(t), the kernels are symmetric and thus
so would be the inverse kernels.)

Our organization is as follows. Since the construction of the kernels
R-L and • follow the same pattern, we choose

one of them, in particular • , and discuss it in complete
detail. This will validate the assumption of Section I and show us that our
theory is not vacuous. We then observe the desirability of alternate conditions
for validation. The point is that our conditions for validation, though suffi-
cient, may be awkward when applied to a particular problem. -This point of
view for integral equations of the first kind has been put forward by Shinbrot

(2,; Shinbrot; page 3) and when our kernels are difference kernels, corres-
ponding to stationary statistics, Shinbrot(ir ; Shinbrot; page 4 ) has an al-
ternate approach based on the use of Fourier transforms. Shinbrot's work
was done in 1960. It turns out that the concept of a "properly posed" problem
(to; Hadamard; page 33), a concept of the first importance for partial differ-
ential equations, was introduced by Hadamard in 1917. In 1938 Petrovskii,
motivated by the above mentioned work of Hadamard, used a Fourier trans-
form to investigate the proper posing (the phrase "correct setting" is more
common in the Russian literature) of the Cauchy problem for one or several
partial differential equations when the initial functions are assumed bounded
(t.z ; Petrovskii ) . We observe that both Shinbrot and Petrovskii obtain im-
portant and similar results when the Fourier transforms increase, in the
neighborhood of infinity, no faster than some power of the independent
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variable. Moreover, in 1957 Gel'fond and Silov generalized the work of
Petrovskii by constructing the Fourier transform for functions which increase
with arbitrary rapidity (9 ; Gel'fond). It is entirely possible that a continu-
ation of the work of Shinbrot in analogy to that of Gel'fond and Silov would
produce results of importance for integral equations of the first kind.

At least as important are two other pertinent concepts of Hadamard, the
notions of finite part (p. f. ) and logarithmic part (p. 1. ) of divergent integrals,
which are basic to the "method of singularities" developed in the years from
1904 to 1932 as an alternative approach to the use of Fourier methods. Rather
than describe these concepts in general forms we now proceed to the exposi-
tion we have outlined~wbrking in the new concepts as specific questions re-
quire their introduction.

The results inChapter I depend on showing the equivalence of the two integral
equations introduced by Youla, namely,

S~~(1- 1-5) J. •-•

and the equations

i(1-2-2) (n)+{ ____

- LL- sj+-s(r -r~~

Since we are given the covariance functions i?•(t)Z+ and '•.S

we first show that (1-1-5) implies (1-2-2) by construction of
and .. (s) It is then easily seen how to reverse the arguments
to show that (1-2-2) implies (1-1-5). Since the construction of the kernels

an (st) and i(t1)S) follow the same pattern we choose to
discuss in detail only one of them, in particular 1• (ors) , since the
notation in its equation is a bit simpler. Since the covariance function
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is continuous, positive definite, and symmetric (?wj ; Youla;
page 100 ), it can by Mercer's Theorem be expanded into the absolutely and
uniformly convergent series

where the i-K) and f't are the eigen functions and eigenvalues of the
kernel R.3S) , i.e., they satisfy

(2-1I-2) 5L)1.(~) Qp;.(S) cc&

In additionthe (-(9) are orthonormal, i.e.,

(2- 1- 3)

and because of the positive definite nature of (93,S) the set
Sis complete (Cal , Tricomi; page 124)

The general analysis utilizing (Z-1-1) with an infinite number of terms is
going to be lengthy. To obtain insight into the construction and to verify in
complete detail the results of ChapterI in an at least restricted setting we
first restrict (2-1-1) to a finite number -J of terms obtaining what is
called a degenerate or Pincherle-Goursat kernel (3q ; Tricomi; page 55 .
With this restriction we now assert that the kernel R( 1,-) is given
by

(2-1-4) ~ 's 1jx 4t~ -ZS

To prove this we need only insert (2-'1-4) in the left hand side of the second
equation in (I-Z-Z) and show that the right hand side results. We obtain
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Rt: -s C*

Aog

t he critical steps in the manipulation following from

A--

J -

where kr C•-) is the "unit kernel" With the property

(2-1-7)

4--r"

".1

_________ ________
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which is just the last equation in (2-1-5). Note that the manipulations from
(Z-1-4) to (2-1-7) are critically dependent on the finite N assumption which
implicitly carries with it the completeness of the set of functions ,

;_ - ) --- , rJ . The removal of this assumption will introduce into the
manipulations convergence difficulties relative to the infinite series to be
considered and consequent difficulty in interchange of integration and summa-
tion in reasoning as in (2-1-5). The class of functions to be considered must
then be widened from the continuous functions of the finite dimensional case
to the L,.. functions and even beyond in some cases to distributional solutions
which are also called generalized functions. Youla was not unaware of these
considerations. See in particular his Appendix A(39 ; Youla; page 100).
Before plunging into these matters we summarize our results.

Theorem, Restricting the positive definite kernels
and R,(i15) to a finite number

N of eigen functions and eigenvalues, the so-called
degenerate or Pincherle-Goursat kernels, it is pos-
sible to define inverse or reciprocal positive definite
kernels R.(%2K) and RL-t s) so that the
set of equations (1-1-5) is equivalent to the set (1-2-2).
Consequently the assumptions in ChapterI that invoked
later demonstrations in Chapter l are validated under
the above mentioned restriction to N dimensional space.

Proof: Given the positive definite expansions

(2-1-8) Cr_ S - ..A( c .

define the inverses

which are clearly positive definite. By direct substitution in (1-1-5) and
(1-2-2) and manipulations analogous to (2-1-4) to (2-1-7) the equivalence of
(1-1-5) and (1-2-2) is clear. Moreover the symmetry implicit in the con-
struction of L r(,) and gi-(Ts) shows that the postulate (1-2-5)
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is actually not a postulate but a consequence and hence non-symmetric kernels
play no part in the theory. Q. E. D.

To investigate the general case we streamline our notation and consider the
Fredholm integral equation of the first kind.

where we assume the kernel KL)c1j is continuous, symmetric, and posi-
tive definite and consequently possesses a complete orthonormal set of eigen-
functions -CjL)• and associated set of eigenvalues I ,;,, -z,--- -
Results applicable to Youla's equations will be collected at the end of this
section and exhibited in the next. To further simplify manipulations we in-
troduce the notation

(2112)
K

so that the eigenfunctions and eigenvalues satisfy

Note that capital letters denote linear operations while small letters with an
arrow above denote functions and small letters without the arrow are scalars.
This is the usual notation in studying integral equations when one thinks of a
function as a vector in an infinite dimensional space. Even without this atti-
tude, the simplification in expression is worth the identification as the follow-
ing illustrates. We rewrite (2-1-11) as

(2-1-14)

Our objectives in this section are centered on the question of the possibility
of writing the solution of (Z-1-14) as
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The class of functions in which we find f clearly depends on the nature
of both kC' and . From (2-1-4) we can immediately obtain the Fourier
components of R- ) relative to the complete orthonormal set of functions

, by taking the inner product of (2-1-14) with to obtain

where we have used the symmetry of K--Y." to provide the critical
manipulation in (2-1-16), i.e.,

From (2-1-16) we have the desired result

(2-1-18)

We now invoke the Riesz-Fisher Theorem (4 ; Courant; page 110) in the
formulation due to Riesz.

Theorem (Riesz 1907). If c Y-) is an
arbitrarily given complete orthonormal system of
functions and if &t, _-- are arbitrary real numbers
for which o_ýt converges, then there ex-
ists a summable "function •-Lx) with sumnmable square
for which A (. , .

By virtue of the above theorem there are only two possibilities: either
(I) There is a unique (neglecting functions which vanish almost everywhere)
function - satisfying (2-1-14) which can be calculated as the limit in the
mean

( 1 19

where

(s-1-2o) t h l 4- is i;Or

so that the solution •-is in L• or



Page 41

(II) The infinite series diverges, i.e.,
(•121 2- .'{ •" "(Z-l-Zl) CPO0

and (2-1-14) has no solution of class J. •

To appreciate how stringent a condition (Z-l-Z0) imposes on we now
show that X,. -• o as ,-• ' This follows from the fact that

where by Mercer's Theorem(& ; Courant Vol. I; page 138 ) the convergence
is uniform as a consequence of the continuous, symmetric, positive definite
nature of KO(,)q) . From (2-1-2Z) we find

(z-l-Z ) 2- < if -,

so that --.'-* co as - --o -b in order that the series converge.
Since the simultaneous satisfaction of (2-1-14) and (2-1-15) implies

(2-1-24) -K- - I)

the identity, it is clear that the eigenvalues and eigenfunctions of K-1
follow from the calculation

so that

i.e., the inverse kernel has the same eigenfunctions but inverse eigenvalues.
The impossibility of the simultaneous satisfaction of

(2-1-27)

A-I

which would follow if we tried to express K, 0) in analogy to
(2-1-2Z) shows us the necessity of adopting a fresh approach in representing
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What we have hinted at in the above observations, in particular in noting that
cb • L s a ,o-t and that

(2-1-26)

is that both the solution • and the operator •-7 may be unbounded in
general and require expression through the concept of distribu rions or
"ideal functions". The name "distributions" indicates that ideal functions,
such as Dirac's delta-function and its derivatives, may be interpreted by
mass distributions, dipole distributions, etc., concentrated in points, or
along lines, or on surfaces, etc. An excellent introduction to ideal functions
or distributions is available in Courant ( 7 ; Courant Vol. II; pages 766- 798)
but in the following pages we choose to give meaning to the phrase, "Either
the kernel is an ordinary function or it must be expressed as a distribution,
that is, obtained from continuous functions by differentiation processes"
C? G Courant Vol. III page 727) . On the same page in a footnote Courant
continues ý "Such a representation for a single equation of second order is
the subject of Hadamard'sfamous theory."

WFhat we attempt to do in the following is to give an explicit example of how
Hadamard, seeking an integral representation of the. Cauchy problem for the
wave equation (to be defined) had to generalize the meaning of integral to
achieve the representation. In the words of Courant, "Hadarnard's invention
of the finite part (of a divergent integral) may be regarded as an important
motivation for the modern theory of distribution" (7 ; Courant Vol. III page
743) . In view of our interest in integral representations in Section I the
possible importance of the above concepts to our theory should be evident
to the reader.

The following formula are in the notation employed by Bureau in a paper
published in 1955(S5; Bureau, page 154) . We give only enough of the prob-
lem to indicate the form of the difficulty faced by Hadamard and the final form
of solution achieved. Detailed study of Bureau to appreciate the constructions,
by no means trivial, is recommended to the reader. That the notion of a
finite part of a divergent integral seems at first sight somewhat strange was
commented on in "An Essay on the Psychology of Invention in the Mathematical
Field" where J. Hadamard himself wrote: "Certainly, considering it in
itself, it looks typically like 'thinking asid&. But in fact., for a long while
my mind refused to conceive that idea until positively compelled to. I was



Page 43

led to it step by step --- I could not avoid it any more than the prisoner in
Poe's tale The Pit and the Pendulum could avoid the hole at the center of
his cell". (t'. ; Hadamard; page 110).

We consider real quantities t- U - and write as abbreviated
notations C 6- Bureau; page 154)

(2l-1-8j) c)Y - +) ) X' -

We consider the Cauchy problem for the wave equation, i.e., consider

(Z-l-z9) F*bxAQ
'k%0) 0

where 't.•) is a regular function and we put U, -% o) 0 to obtain
simple formulas. The case for Ix(CX;o) : o can easily be solved once
the above problem is resolved (s- ; Bureau; page 155). We shall say
that a function c(•) is regular if it is continuous together with its deriva-
tives up to a certain order s ; the order will vary according to the nature
of the problem. This class of functions occurs over and over again in the
work of Hadarnard and we will meet it later in discussing his concept of
"properly posed" problems. The solution of (2-1-29) is given byEs- I Bureau;
page 157)

(2-1-30) -tX.t) -- . -- . ., -

where

(2-1-31) k "- e- Ux) d-&LAA

is the mean value of the regular function ýOo) on the hypersphere -A-,e.
of center X and radius x. in the p-dimensional Euclidean space. The
temptation is great to rid (2-1-30) of the derivatives by differentiating the
integral but since

2- -



Page 44

the resulting terms in (Wt-0.') would be raised to negative powers and
consequently diverge for c'= * , i.e., at the end of the interval. Yet this
is the key to the problem. In order to obtain an "integral" from (2-1-30)
one must generalize the meaning of integral to cover the case where infinities
occur. Hadamard conceived the idea of discarding the "infinite part" of the
integral and saving the "finite part" (p. f. ) and moreover was able to find a
consistent setting for his concepts. Little wonder that he felt drawn to the
"pit"! He thus achieved one of the very basic advances in mathematics, the
extension of a given set of mathematical objects $ by additional new "ideal
elements "not defined as entities in the original set % (here not defined be-
cause of divergence), and not defined descriptively but defined merely by
relationships such that in the extended set " the original rules for basic
operations are preserved.

The final form of Hadamard's results is sensitive to the even or odd nature
of p, which is tied up to the study of propagation phenomena and Huyghens'
Principle valid only for p odd and greater than one( 7 ; Courant Vol. IIj page
764 ), so that separate new concepts, finite part (p. f.) and logarithmic part
(p. 1. ) of divergent integrals enter the following:

For p even, (2-1-30) can be replaced by

(2-1-32) -A,

where

(2- 1-33) A --

For p odd, (2-1-30) can be replaced by

(2-1-34) t c-t) j, L. 1 Y '

where

(2-1-35) -- C-, - - W
Since (-t--n-) I is a solution of UXi -- AL = 0 the
reader should note the resemblance of (2-1-32) and (2-1-34) to the usual
convolution formulas used in communication theory. For precise definitions
of finite part (p. f. ) and logarithmic part (p. 1. ) of the divergent integrals see
Bureau( 5; Bureau; page 146). The number of derivatives s of •(y)
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that enter (2-1-32) and (2-1-34) are then clearly seen and it follows that the
solution U Cyxy) depends in a continuous fashion on ) and derivatives
of 4(0) up to order s ,

The nature: of the above solution contrasts sharply with the behavior of the
solution of the Cauchy problem for Laplace's equation, i.e. , consider

(2-1-36) ___- ý -

In his Yale lectures(io ; Hadamard; page S ) Hadamard made the follow-
ing observation concerning the solution of (2-1-36). It is possible to modify

the solution of (2-1-36) arbitrarily much and arbitrarily near the line -t=o
by changing the values of 1, tp) and I 1C) and of all their
derivatives at t = o as little as we please. To do this one adds to
the given solution

(2-1-37) Y=

where ^-. is a positive constant. The function i", which is a solution of

the differential equation in (2-1-36), and an arbitrary number of its partial
derivatives with respect to t and )L are arbitrarily small at t=o , if

'- is chosen sufficiently large, but for -t• 9>o the function •-v•i•)
assumes arbitrarily large values dependent on the choice of 4 .

Hadamard then draws a distinction between "properly posed" problems, of
which (2-1-29) is an example, and "improperly posed'" problems, of which
(2-1-36) is an example. More precisely we say that a Cauchy initial value
problem is properly posed if there exists a number S such that for initial
functions % J) that are regular of order S , i.e., continuous to-
gether with their derivatives up to order 5 , then there exists exactly one
solution U(j -6-) and ,Ld()x* ) depends continuously on the cy-)
and on their derivatives of order -S 5

In 1938, I. G. Petrovskii (2Z7 ; Petrovskii ) motivated by Hadamard's ideas
analyzed by Fourier methods the following system of linear partial differ-
ential equations

where Z.t4Ly-) - IU, I - i*n(Xyt)3 is the desired vector
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function with iw components, depending on the time I- and also on the
spatial point ^A - -- 'A Q E is a matrix with /% rows
and i• columns, whose elements are polynomials in the differential opera-
tors with respect to the variables Y.- _ -- of
various orders and with coefficients which depend continuously upon the time.
The initial conditions are given by

(2-1-39) 1..)) o )

where 7o*0 is a given vector function. Applying a Fourier transform,
denoted by .(C.{,b) - z• UCY) to (Z-I-38) we obtain the system of
ordinary differential equations,

(2-1-40) tJLt G)i (*-

where the matrix I is obtained by the correspondence

(2-1-41) 1 _> /, W

Petrovskii obtains a necessary and sufficient condition that (2-1-38), (2-1-39)

be properly posed. (Actually Petrovskii's setting is slightly more general,
the precise concept he investigated being that of "uniformly properly posed"
problems where the initial instant is not necessarily t= o 6-- 0 4-1, T,
but we shall not introduce the additional notation here b2- ; Petrovskii; page
3 . ) The distinguished condition, called Condition A in the literature, ex-
presses a restriction on a fundamental set of solutions of (2-1-40) relative to
their rate of growth with respect to O(M , where

(2-1-42) M -A-j~
4..

as i•M - . In essence Condition A states that no solution of (2-1-40)
grows faster than a fixed power of a•r as c4M -- + - . The point of intro-
ducing fundamental solutions is that the above condition need be checked only
for v. independent solutions of (2-1-40). The number S in the definition of
properly posed can be related to the maximum power of o/" in the verifi-
cation of Condition A, when the condition is fulfilled. This fact is our con-
necting link with the work of Shinbrot on integral equations of the first kind
and ultimately with Youla's equations!

In 1960 ShinbrotLb$; Shinbrot) studied the integral equation (2- 1-11) with the
additional restriction
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(2-1-43) (x
i.e., that is a difference kernel. The equation (2-1-11) then
becomes

(2-1-44) X K(I-O ~ '"

-I

Using the same notation as with Petrovskii but noting that now )c and C(
are one dimensional we denote the Fourier transform of K( im) b6 j c.).
In order to state his results Shinbrot makes three assumptions 2; Shinbrot;
page 4)

(i) The derivative

is continuous for real o4. and belongs to L.•

(ii) The derivative

as , o -to ' - along the real axis.

(iii) The quantities

%VT'

are both finite.

Note that for K( |'-'3| • a covariance function it follows that K-•(ý)
is real so (ii) is trivially satisfied. The assumption (i) is familiar from
consideration of network synthesis ideas and says essentially that an accept-
able "',) does not change too rapidly. Recalling Condition A from the
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work of Petrovskii, "No solution of (2-1-40) grows faster than a fixed power,

say t , of C;M 4 , -- S "we see that, assigning "E-C.0 the

rate of growth from Condition A yields in (iii)

(2-1-45) ~ ~ ~

We are not of course asserting a direct connection but merely that the rate of

growth of Petrovskii's solutions yield finite, acceptable limits in (iii).

At this point we quote pertinent sentences from Shinbrot concerning this pur-

poses and his main result which we summarize as a Theorem (2; Shinbrot;

page 5). "In most applications, one is interested in solutions that belong to

some I - class. In the case of the problem of a filter with a finite memory,

however, the solution itself represents an operator that is to be applied to the

signal plus the noise to obtain the best linear approximation to the signal it-

self. Consequently the solutions of interest do not necessarily have to belong

to any 1. - class; indeed they need not be functions at all but may be dis-

tributions in the sense of Laurent Schwarz (e.g., %- functions and their de-

rivatives)".

Theorem: (Shinbrot) If D-/%.] is used to denote the

integral part of ý'Xz, the solution of (2-1-44) consists

of an "ordinary" function belonging to some ,L-class plus
a finite sum of derivatives of the % -function, the highest
derivative that can occur being FŽ4•- I.

Remark: Of the many possible approaches to the • -function and its deriva-

tives currently available Shinbrot depends on the treatment of Lighthill which

is especially suited to Fourier methods( 7 ; Lighthill ; P. '767) .

Example: For KrI.I) e- 'IX so a '*09 can occur in

the solution of (2-1-44).

2.2 APPLICATION TO YOULA'S EQUATIONS

For finite dimensional kernels the theory is complete as indicated in the

first theorem in the last section. The general situation when one attempts to

produce kernels (4: ) and I? to show the equiva-

lence of Youla's equations (1-1-5) and the equations (1-2-Z), which are

solved for in order to eliminate and produce the functional
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is that distributional solutions are appropriate. This is
especially clear from (2-1-18) and (2-1-26) which indicate in general notation
that both the function + and the operator K-' associated with (2-1-15) may be
unbounded. That integral operators are bounded and differential operators
are unbounded is well known. The question then arises; must differential
operators be admitted to the theory and,if so~to what extent?

At this point we attempted to illustrate two concepts of J. Hadarnard that are
of great potential for further progress in analyzing Youla's equation. The
first was the concept of finite or logarithmic part of a divergent integral,
the divergency occuring when one attempted to eliminate the derivatives ap-
pearing in (2-l-30)the solution of (2-1-29). The use of divergent integrals
in the systematic fashion initiated by Hadamard and carried on today by
Bureau is an approach almost unknown in communication theory. One of the
main virtues of the approach is the directness with which it answers the
question raised above concerning the number of derivatives that must appear
as a result of the generalized meaning of the integral. See (2-1-32) to
(2-1-35) and the discussion that followed.

The second and related concept was the properly posed nature of a problem
which implied through subsequent work of Patrovskii an approach through
Fourier integrals that again emphasizes how many derivatives must enter
the soliution of a Cauchy problem. The similarity between this work and
that of Shinbrot which is applicable for the specialization to difference ker-
nels, hence stationary statistics, seems especially strong in light of equation
(2-1-45). Finally the generalization of Petrovskii's work by Gel'lfand and
Silov(9; Gel'lfand ) may provide tools to generalize Shinbrot and ultimately
Youla's work.
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CHAPTER III

COMMUNICATION SYSTEMS BASED
ON HADAMARD MATRICES

3.1 INTRODUCTION

In 1909 Hadamard's Theorem on the maximum value of a determinant with
bounded elements was utilized to prove the convergence of the celebrated
Fredholm Formulae (S ; Tricomi; page 66 ) which explicity represent the
resolvent kernel of an integral equation of the second kind with a bounded
kernel. Having spent the first two chapters reasoning with integral equations
of the first kind it is pertinent to remark that when the kernel in an equation
of the first kind is a composite of an ordinary function and a distribution or
ideal function then the equation of the first kind includes within its scope
equations of the second kind and integro-differential equations. The central
idea of Fredholm's method was a heuristic construction for a bounded kernel

KIiL,j) that would mimic the finite dimensional construction applicable
for a degenerate or Pincherle-Goursat kernel Rather than
attempt to justify all aspects of the passage to the limit as . -oo , which
would correspond to the approach of the last chapter)Fredholm simply wrote
down the infinite series forms made plausible by finite dimensional arguments
and directly verified their convergence by means of a majorant series, the
convergence of the majorant series following from Hadamard's Theorem. We
now give an explicit statement of the theorem(3y ; Tricomi; page Z23)

Theorem (Hadamard) If D is a determinant of the n-th
order of the matrix i[r&. , (it, -
then

S~

- T II'~4

where

(3-1-2) 0C. (&ai)o4 --- )

Moreover, equality in (3-1-1) is attained only when the row vectors 4 are

____________ __________
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mutually orthogonal, i.e. ,

S=1

Geometrically (3-1-3) implies that the volume of the polyhedron formed from
^, vectors of given length in ,, dimensional space is greatest if the factors
are mutually orthogonal. Provided that

(3-1-4) A &S-5

it follows from (3-1-1) that

(3-1-5) ) B

Modern communication theory assumes a normalization of B, namely B=I,
so that the following definition emerges(9-) ; Peterson; page 79). A Hadarnard
matrix H is an orthogonal 'x,. matrix whose elements are the real numbers
+1 and -1. The orthogonality is in the sense of (3-1-3).

Our purpose in this section is to present some communication system tech-
niques that are derivable from a mathematical concept that reduces to a

Hadamard matrix in certain special cases and that constitutes a generalized
Hadamard matrix in the remaining cases. The sense of the generalization is
relative to the concept of orthogonality. Clearly a Hadamard matrix H satis-
fies the equation

(3-1-6) H H AA-.

where T means transpose and I is the identity matrix.

Any matrix satisfies the equation

(3-1-7) A Ar--

where k is a scalar and R is a "remainder" matrix. We associate the rank
r of R with the degree of orthogonality of A. If A - o , i. e. , R vanishes,
then A is an orthogonal matrix. If r = 1, we say that A is "almost orthogonal".
The cases r=Z, 3, --- , n correspond to lesser degrees of orthogonality and

will not be distinguished by name. The "almost orthogonal" matrices consti-
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tute the basis of a multiplexing technique which has certain attractive features
for use as an anti-jamming communication system. The basic philosophy of
our approach is that orthogonal matrices are of too simple a structure to

analyze and hence jam, but that almost orthogonal structures are sufficiertly
simple to construct and sufficiently variable to make jamming difficult. The
multiplexing approach will occupy our attention in section 3.2.

Having outlined our purpose we now show the naturalness of our approach by
putting the Hadamard matrix 1 in perspective with modern coding theory.

It is important in the theory of symmetric binary codes(:-i; Slepian • to
determine the maximum number N(-,A) of different m--place binary se-
quences that can be constructed such that the Hamming distance L11 1 Hamming)
between any two of them is greater than or equal to a preassigned positive
integer ,A . A set of ., /v -place binary sequences such that the distance
between any two is greater than or equal to d is called an tv' -place code of
length v, and minimum distance c . Denote such a code by tM

Cis; Plotkin)

Since A% mutually orthonormal vectors in an ,1--dimensional space have,.
in the usual Euclidean metric, the maximum possible separation one suspects
that, mapping the real numbers + I and -I into the binary notation of
coding theory, a Hadamard matrix can be associated with a code I(-j c 4n

That such is indeed the case is the content of the following theorern( 1; Peter-
son; page 79).

Theorem: If there exists an A k Hadamard mxiatrix,
there exists a binary code M (&)4) where A-= %k0 c:& .

Proof: Let H be a Hadamard matrix. The code is constructed as follows:
Form a set of . vectors 0,,_• - O C 2 .- -- -> k2

where the 0 . -_ are the rows of H . Then in each of
these change the -1', to o'W and the -I'm to :i/,&, . This gives a set of

-.L,. vectors of ý,. binary symbols each. Since corresponding com-
ponents of OL, and - k are different, the Hamming distance between a-
and -•S, is ,,• -. Since i: t.• and t- o,, are orthogonal, equa-
tion (3-1- 3), if , they must match in half the positions and differ
in the other half, and thus the corresponding binary vectors are at distance

. Q.E.D.

For example, it is easy to construct a Hadamard matrix H_ for
where K is a positive integer. The resulting code is the same as a first
order Reed-Muller code(a'; Reed) or a MacDonald code (19; MacDonald).
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That codes generated by Hadamard matrices are maximal in the sense that
no other code with the same minimum distance and the same number of places
has greater length was demonstrated by Bose and Shrikhande: "This note es-
tablishes a connection between Hadamard matrices )-q+, and the maximal binary
codes 1( t ))M(t-' ):t " qt~) Oabs q -t 2*3 t~

in two symbols 0 and 1, where by M (' c •-) , we mean a set of vv.

n-place sequences with 0 and 1 such that the Hamming distance between any
two sequences is greater than or equal to d"ti(t ; Bose; page 183).

In order to state more explicitly the "connection" in the above quotation, we
now introduce the concept of a symmetric balanced incomplete block design,
the so-called pý A-k) X problem, a concept sufficiently general to include
the Hadamard matrices as a special case.

Foregoing the symmetric case for the moment, we define a balanced incom-
lete block design as an arrangement of AY objects into 6 sets called blocks
such that every object occurs exactly /7 times and every pair of objects
occurs exactly X times in a block. The subject of the design of experiments,
in which the above concept has played a central role, was built up largely by

two men, R. A. Fisher and F. Yates. The subject of the enumeration of
designs was dealt with by Bose in 1939 whose principal tools were the use of
finite geometries and symmetrically repeated differences (3 ; Bose ) .
Viewing the design of experiments as an attempt to extract information against
a background of interference we see the naturalness of Bose producing papers
in 1939 and 1959 using virtually the same tools on what at first sight seem
distinct disciplines, namely design of experiments and code construction.

For a symmetric design, 6-$L' and le)A , and the arrangement is called a
0rj 4 )- configuration. Irrespective of its connection with statistical con-
siderations, as outlined above, the "r, h), >X problem has played a dis-
tinguished role in combinatorial mathernatics(,'; Ryser; page 4569.

The Wl)• Problem. Let 4r elements XK, I _> , X0- be arranged
into .- sets X, , - - , My.~ such that every set contains exactly A& dis-

tinct elements and such that every pair of sets has exactly X. elements in
common ( o e- x < A <. -,) • Such a configuration is called a ix.) *"t) k con-
figuration. Let = if YS is in set :>Ci and o.. - otherwise.
The matrix 0 of order A- is called the incidence matrix
of the P4,, configuration. Let ArSkX be integers such that oexe4ser.
Then a '.5 configuration exists if and only if there exists a (o) i)

matrix 1k of order .r such that

(3-1-8) A AT
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where AV denotes the transpose of • and where 3 has AM in the main
diagonal and %. in all other positions. Clearly, the - on the main diagonal
of b is associated with 4

t. ones in each row of A , and ). elsewhere is
associated with the overlap of X. ones in each distinct pair of rows of A .
Since each element occurs equally frequently with a specified one within a set,
we have that 4L (&4a--) -c {-(-,) 1 so that

(3-1-9) k-

The central problem in the study of these configurations is the determination
of the precise range of values of .q ,- k,. X for which configurations exist.
Our need for a variety of configurations is, dependent on specific requirements
of the multiplexing scheme we have in minds so we defer the general question
of construction until later.

A specialization of iX'-) •> ý, to J-= , A=k '- , " - - I leads
us back to a Hadamard matrix of order t(533; Todd) . Mor-e precisely, the
existence of such a r4 configuration is equivalent to the existence of a
Hadamard matrix of order v . An easy construction to exhibit the equiva-
lence is to start with a Hadamard matrix of order +e7 in normal form, i. e.,
by permutations normalize the Hadarnard matrix to have only +4VS in the-
first row and column, delete the first row and, column to form a matrix of
order = 94-t- I ý and change the -l's to 0's. Concerning l's there are
clearly 4 = '-I in each row and since the orthogonality of H ,# required
the coincidence of l's in 'c columns the coincidences have been reduced to
X = -- I . Hence the resulting matrix meets the requirement (3-1-8-) with
,%r= +-1 , 4 i-_.-I , X =- 6- - and the reasoning can clearly be

reversed so the equivalence is complete.

With the above concepts in mind we return to a definitive statement of Bose
and Shrikhande in the following theorem ('.; Bose; page 186).

Theorem: The following statements are equivalent:
(a) A (44,--t)s•-i.e., there exists a code N,( 4-t), •,y -)

(b) A(4*-IU)ýti" e., there exists a code N-(4*-(, xzt q-t)

(c) There exists a tr)4,zX configuration with the following
parameters,

(d) There exists a Hadamard matrix i,1 .
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We now complete the cycle of reasoning of Bose and Shrikhande by stating
a result of Plotkin L'J ; Plotkin) .

Theorem: For any positive integer t

(iii) qk q••¢ •-t:%

Combining (a), (b), (c), (d), (i), (ii) the maximal nature of the codes
q ()' *) and t4 2%-I.)q4 I 4-) is established.

The results of our discussion so far can now be summarized in the follow-
ing figure.

~Plotkin Maximal Codes

Orthogonal

Hadamard Configurations

Matrices 4L --

FIGURE 4

EQUIVALENCE THEOREM OF BOSE SHRIKHANDE

The most notable feature of the research summarized in Figure 4 is the
use of a special case of the tJ34t,% configurations. We set ourselves the
task of obtaining interesting consequences of the general Ný 4ý.X configura-
tions characterized by (3-1-8) and (3-1-9).

We first rewrite (3-1-8) as

(3-1-10) A AT. (4 -A) T + X

where T denotes the identity matrix, denotes a matrix of all l's and
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since O< (Z, e

Now observe that

(3-1-11) A • * -

since A, has l's in each row, so that each column of t is an eigen-
function of A with eigenvalue -k . Note that ; is of rank 1 so that

A is "almost" orthogonal in the sense of the discussion following (3-1-7).
Putting (3-1-11) in (3-1-10) we get

(3-1-12) x -- ) "Z+ x _

so that

(3-1-13) At AT '(4-AyE

which yields

(3-1-14)

In addition, if A is symmetric, (3-1-14) becomes

(3-1-15)

If in (3-1-15) it is possible to choose 4t= k , then using (3-1-9) we obtain

(3-1-16) A _ - AT= pk
At-= qX- i

Since A consists of lVs and 0's, ý'L consists of Z's and 0's and '-N-4
(remembering that $ has l's in every position) differs from A only in
that the 0's in & are replaced by -l's in %A-A'. For example, a ,4z
incidence matrix Ai for 7) -k 4 1-- is

1 0 1 0 1 0 1
0 1 1 0 0 1 1

(311)~1 1 0 0 1 1 0(3--17)0001111
1011010

0111100
11O1001
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whose inverse is

(3-1-18) A, - 1 -1 -1 1 1 1 1I-r 1-1i 1 -1 1 -1
-1 ~ 1 1~ 1 1 -1

It is a curious fact that if we border (3-1-18) with a column of -I's and a row
of -l's that we obtain a Hadamard matrix 1I4. where the usual roles of -1 and
+1 have been interchanged in that -l's appear exclusively in the first row and
column.

The main point we want to emphasize about the choice in (3-1-16) that simpli-
fies --1 so remarkably is that Ryser(ýL; Ryser; page 457 ) has shown,
and we quote, "Another important specialization of values of .§ &) X is

W- q -tI , AL= O. , .= t Such a PTY-k, ?, configuration is equivalent
to a Hadamard matrix of order 9- 1. We summarize Ryser's result in
Figure 5.

Orthogonal 4

"O n configurations

Hadamard q- -

M atri e 17 *]IL 1- ":1

FIGURE 5

EQUIVALENCE THEOREM OF RYSER

Comparing Figure 4 and Figure 5 one might suspect the existence of
Plotkin Maximal Codes distinct from those obtainable by the Bose, Shrikhande
scheme. That such is not the case, that indeed one could hook the configura-
tion in Figure 4 and Figure 5 together by equivalence arrows is shown by
the following, reasoning. Assume the existence of a ?ý X configuration
with an incidence matrix k where o--- 4-t , A = D-t , %-_ -t . Then
the matrix - A is a matrix of zeros and ones which we assert is an inci-
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dence matrix of a ,H 4L/ configuration where *.--= - , --l '• .t-i
X' 4 •-9 . To see this we calculate, using (3-1-10), that

(3-1-19) A• • ý.-k=- N -N• -%• ' - A

- r s-4s--# T -t

-r 4?- -~ xj

so that
(3-1-20) i--X*&-

which satisfies the equivalence, since, of course, + Lj - I In
essence the configurations of Bose, Shrikhande and Ryser are related merely
by interchanging zeros and ones.

3. 2 A MULTIPLEXING TECHNIQUE

The simplicity of the equation (3-1-15), exhibiting the inverse matrix
suggests to us a multiplexing technique that has sufficient arbitrariness in
its structure to consider its use for an anti-jamming system. Fixing 'J,
which specifies the number of channels to be multiplexed in a given applica-
tion, one looks for appropriate solutions of (3-1-9), i.e. , permissible values
of 'xk . Assume there are rw't such pairs, call them (X1> 4.)? --- ,
( • 4wk). THEN WE ASSERT THAT THERE EXIST A-- MODES OF OPERA-
TION OF A MULTIPLEXING SYSTEM SUCH THAT AN ENEMY'S PICKING UP
A TRANSMITTED SIGNAL IN ONE MODE, AND THEN JAMMING IT, CAN BE
AVOIDED BY SWITCHING TO ANOTHER MODE, THE SWITCHING PROCEDURE
BEING SIMPLY IMPLEMENTED. MOREOVER, FOR A DISTINGUISHED SET OF
tr 'S THERE EXISTS A SIMPLEST MODE WHICH COULD BE USED UNTIL
JAMMING COMMENCES, AT WHICH TIME SWITCHING TO A MORE COMPLI-
CATED MODE OCCURS.

The simplest mode corresponds to the simplest form that A-1 can take,
namely, that specified by (3-1-16). For the physical realization we have in
mind see Figure 6.
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4-+

-0omMo0n ?a-+k

FIGURE 6

ANTI-JAMMING (MULTIPLEXING) RFALIZATION FOR -" -.

The indicated switches act sysnchronously and serve as gating functions. The
low pass filters (L. P. F. ) eliminate the side bands associated with gating. In
addition they are assumed to be sufficiently narrow band that the filtered ver-
sion of any of the signals to be transmitted, say -X, , will not change during
,sequential settings of the gating functions. This, of course, relates the

necessary switching rate to the allowed, band width of the signals %I
%,r to be transmitted.

The proposed operation of the switches is as follows. Instead of transmitting
, --- , M4r sequentially on the common path~we transmit the "composite"

sequence •! , --- , 'j•- where

(3-2-1) - A x

and A is an incidence matrix of a r•Y 4 t) X configuration. Both - and
are column vectors of length fJ' . The input gating functions, which

correspond to the rows of the A matrix, are either 1 or 0. Note that the
arrangement of grounds in Figure 6 allows the gating functions to be 1,
-1, or 0. Thinking of the At matrix exhibited in. (3-1-17) for the case
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i• 1) ') ,• •L- 2. , we see for example, that

Hence an enemy, who requires that he understand how we are transmitting in
order to efficiently jam our transmission, must obtain V' and apply it to
Even if he does this we rely on our ability to find other k..A corresponding
to a fixed A to switch "modes" of transmission.

Regarding the ZX in (3-1-16) as an inessential gain factor, we set the output
gating functions, which corresponds to the rows of the -1. A-1 matrix, to
either +1 or -1. Again thinking of the AN matrix exhibited in (3-1-17) we
see, for example, that from (3-1-18) it follows that the output of the first
channel on the right hand side of Figure 6 is given by

(3-2-3) q x, -- , -- -l4-'3 A 4A7< _j +

For every 1, 0 setting of the input gating functions there is synchronously
a 1, -1 setting of the output gating functions for the case - 2.7, our simplest
mode of operation.

For • -4 we vary the scheme in Figure 6 only in that we now use two
switches in the output gating functions. To see that this suffices examine
(3-1-15) rewritten as

(3-2-4) (AC2--) - A - ,- I

In (3-2-4) we see that (.&-%) A-? can be realized as a composite of O , i.e.,
output gating functions varying precisely in step with the input gating functions,
and'a fixed set of switches, i.e. , invariant in time, attached to the negative
terminal of each output channel with an attenuator of magnitude 11/4?, in
each. See Figure 7.
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X,~ ~ CoM P =F

4-0

FIGURE 7

ANTI-JAMMING (MULTIPLEXING) SCHEME FOR 2- X
(Note Additional Switches Characterized by )A, Are Required)

We could, ol course, not make any distinction and always use Figure 7 , or
equivalently (3-Z -4) if this proves more convenient in engineering practice.

To illustrate the above scheme we write down a incidence matrix
AL for -= ,7 ,z X-i , i.e.,

0 1 0 1 0 1 0
• 1 0 0 1 1 0 0

0 0 1 1 0 0 1

(3-2-5) 1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 11 0

so that corresponding to (3-2-1) we now have

(3 2-6) A3, = ÷ +

and corresponding to (3-2-4) we now have

(3-2-0100101
100001
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at the output of the first channel on the right hand side of Figure 7

We now make some comments on the relation between the process depicted
by Figure 7 and an, orthogonal multiplexing technique based directly on an
associated Hadamard matrix H1 , whenever the ry- 4>>, parameters are
such that an * matrix exists in the sense of either Figure 4 or Figure 5
For example corresponding to the AX. in (3-2-5) there clearly corresponds the
Hadamard matrix 1-1 = Hi ,specified by

+ + + + + + + +

+ - + - + -+ -

+ + - + +

(3-2-8) ---- + - + + - - +

+ + + +

+ -+ - -+ - +

+ + - - + +

+ - -+ -+ + -

which has the property

"(3-2-9) H- T H

so that H. is essentially, except for a "1gain"I factor, its own inverse. Hence
if in Figure 7 we omit the fixed set of switches and allow the output gating
functions to vary precisely in step with the input gating functions, both sets
of switches taking the values + 1 in accordance with the rows of Hr , we have
an orthogonal multiplexing scheme. This orthogonal scheme was jointly
studiedby M. E. Hines(i5; Hines ) and the author(74 ; Segers) in con-
nection with time division multiplexing transmission, without companding,
the mix of "loud" and "soft" talkers accomplished by H g providing improved,
i. e., steadier signals for transmission. By the same token the effect of the
mixing technique on interference is to spread noise power concentrated in
time in the common path over a large range of time at the output terminals.
The essential generalization of the scheme of Figure 7 over that of Hines

and Segers (the engineering was first conceived by Hines and the study of the
matrices involved was then the work of Segers) is the inclusion of the fixed
set of switches supplementing the synchronously varying, ones of the ortho-
gonal scheme. The essential mathematical. structure underlying the possi-
bility of such a scheme is the "almost orthogonal" character of A embodied
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in the fact that • is of rank one. The possibility of the utility of the struc-
ture of Figure 4 for anti-jammining is clearly dependent on the number of

Nr J?, 9> configurations, for a given W , that we can concoct.

The search for P5 42)X configurations has become almost a career in itself
to many mathematicians and engineers. We content ourselves with providing
references to literature that has: helped us rather than attempt a short, and
consequently inadequate, survey. In a 1962 book edited by Toddtsz-; Todd;
page 518 ) Marshall Hall, Jr. contributes a chapter on "Discrete Variable
Problems" and includes a section on "Systematic Search for Block Designs".
The work of Baumert, Easterling, Golomb, and Viterbi at Jet Propulsion
Laboratory has been outstanding and a good summary up to 1961 is provided
by (?-; Baumert ) while recent contributions have appeared in almost every
issue of the Research Summaries of the Jet Propulsion Laboratory. The
work of the group at Sylvania is extensive but just in the process of being
publishedexcept for a 1961 report, a goodly number of whose ten chapters
were contributed by Turyn(ssr; Turyn ) . Recent issues of the Proceedings
of the American Mathematical Society have much relevant information on
new techniques and results.

There is a further relation of interest between the incidence matrix A, of a
At ) k% configuration and a Hadamard matrix 14,c. Assuming for conven-

ience that At =kT then by (3-1-8) \=- 1B , where 16 has A, in the main
diagonal and X' in all other positions. We show below that 1ý , which differs
only by a constant factor from a "correlation matrix" whose eigenfunctions
and eigenvalues were studied by Max(2-; Max; page 114 ) , has only two
eigenvalues. The larger eigenvalue has associated with it an eigenmanifold
of dimension one and the smaller eigenvalue has associated with it an eigen-
manifold contaiing all other vectors perpendicular to the first eigenmanifold.
Consequently, the uniqueness of the first eigenvector makes it of great in-
terest as a candidate for timing purposes. Quite clearly our assumption of
synchronously operated switches at input and output, in the face of natural
noise and jamming, is a critical one. Indeed, since the ability of spread-
spectrum systems to reject noise and jamming when synchronized is in-
herently superior to their ability when synchronization is being established,
it is not an exaggeration to say that a major problemif not the major problem,
is to establish initial synchronization.

Before plunging into mathematical detail on the ideas outlined in the last
section we first simplify the implementation in Figure 7 so as to put the
essential question in better perspective. For instance~using the matrix X-
in (3-2-5) as a model~the switch on channel 1 goes through the sequence of
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value s

(3-2-10)

and the switch on channel 2 goes through the sequence
I- .1 I

0 0 0 0

This is hard to implement; instead we assert the possibility of using com-
binations of resistors, say, unit resistors connecting ,> 3.t, Xr. to switch
position %, , unit resistors connecting V, , )eq ' s- to switch position

9, ; etc. ; finally, unit resistors connecting x&., Y - to switch posi-
tion $7 ; and the usual commutator switch to gather all the above sequen-
tially from ,j , --- ,

Since we also need fixed connections to negative terminals on the output in
Figure 7 and we might want to reverse the process, i.e. , put fixed con-
nections to negative terminals on the input, the most general structure of
interest is gotten by replacing the "inner core" of Figure 7 , i.e. , the
structure of Figure 8

FIGURE 8

"INNER CORE" of FIGURE 7
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We replace the inner core in Figure 8 by the structure Figure 9.

FIGURE 9

ALTERNATE CIRCUITRY WITH COMMUTATORS,
RESISTANCE MATRICES AND VARIABLE DELAY

The transmission properties of Figure 7 and Figure 9 are identical.
We have merely replaced the complicated switching pattern by interconnection
matrices plus simple switches and indicated a variable delay in the common
path to emphasize the problem of putting the information in the correct output
channel. We now return to mathematical considerations concerning the
matrix B

Theorem: The matrix 1? of order N--qt, in (3-1-8),
is specified by

(3-2-10) :, 4 >"( _ A. AT
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This matrix has only two distinct eigenvalues, k-,-x
and k•q•. .r-,3 2•. The eigenvector associated with
the larger eigenvalue is the column of k4q consisting
entirely of l's. The o.'-i remaining columns of Hqv•
are eigenvectors associated with I - __

Proof: Clearly we have that

(3-2-11) _.= 4

so half of the statement is established. Now consider

i.e., try to find eigenvectors X associated with 4I-X. Using (3-2-10) in
(3-2-12) we obtain

(3-2-13) CA,1 ) " -'- -4-

and since X~o , (3-2-13) yields

(3-2-14) %-K b

Since the rank of • is one,(3-2-14) reduced to the single equation

(3-2-15) %I -(- - -+--X r i=o ýq

which is satisfied by the s4r-I columns of H Nr = t:j -t that are not all l's.
Clearly, there are no more than rr" eigenvectors. Q. E. D.

The ratio of eigenvalues

(3-2-16) --Pe- 4e,

where we have used (3-1-9) to simplify the numerator, is a measure of how
much "magnification" the matrix 13 produces on the distinguv.%Ied vector of
all l's relative to the other vectors.

The essential problem that remains is to relate the eigenvalues and eigen-
functions of A , the square root of 3 , to those of • Here we have an
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ambiguity in taking the square root of eigenvalues. Granting that this can be
resolved there remains the problem of how precisely in the mechanism of
transmission to reserve the timing signal so that the information process will
not initiate it, or noise initiate it, to give fake timing information. The solu-
tion of these problems requires further study.
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